

A systematic study on Traditional software development

models and Agile Software Development Methodologies

Yahya Al-Ashmoery Najran Nasser Youness Chaabi

Department of Information Technology Department of Mathematics & Computer CEISIC, Royal Institute for Amazigh

Al-Razi University Sana’a University Culture, Rabat, Morocco

Department of Mathematics & Computer Faculty of Science chaabi@ircam.ma

Faculty of Science Sana’a, Yemen

Sana’a University, Yemen Meetnajran@gmail.com

Yah.AlAshmoery@su.edu.ye

Hisham Haider Khaled Alwesabi Adnan Haider
Department of Computer Science Department of Information Technology Department of Computer Science
Amran University Al-Razi University Amran University
Al-Razi University Sana’a, Yemen Al-Razi University, Yemen
Sana’a, Yemen koalwesabi5022@gmail.com eng.adnanhaider@gmail.com
hesham_haider@yahoo.com

Abstract— Agile software development is one of the

effective approaches that software engineering has developed

to get to the final software product. Software engineering is a

discipline that has undergone many improvements that aims to

keep up with the new advancements in technology and the

modern business requirements. For a very long time,

traditional software development models like Waterfall, RAD,

V-Model, and Spiral Model dominated the software industry.

However, to keep up with expanding needs and technological

advancements, software developers tried to investigate more

advanced software development models, which eventually led

to the creation of agile development models. Software

development is a crucial undertaking that needs a thorough

and organized manual in the form of a model of the software

development process. In order to create software of the highest

caliber, a good software development process model can be

really helpful. This study presents a thorough analysis of the

major agile values and concepts as well as the key distinctions

between agile and conventional techniques. Following that, a

review of the most common agile approaches is presented,

along with information on their life cycles, roles, and benefits

and drawbacks. the most recent cutting-edge trends that use

agile development. The article also covers some of the

difficulties teams could have while putting agile software

development approaches into practice, as well as the

advantages of employing them. Finally, it offers some advice

for businesses who are thinking about implementing agile

development.

Keywords— The software development life cycle (SDLC),

Agile software development, RAD, V-Model, Spiral Model.

I. INTRODUCTION

 Software engineering belongs to the engineering
family since it undergoes the same analysis, design, and
development procedures as other engineering specialties like
electrical engineering, mechanical engineering, and civil
engineering. Similar to other technical disciplines, software
is likewise created to serve a specific function [1].

Software engineering and development are joint endeavors,

and while tasks may be divided among several teams, they

must be managed and prioritized according to certain

standards. Although tasks can be completed in parallel,

some cannot begin before they are completed. In order to

produce the finest software or product at the lowest possible

cost, coordination between these activities, procedures, and

teams is therefore essential. [2].

Software engineering is a field that integrates computer

science and engineering processes and ideas to create

software systems. It entails using methodical and disciplined

ways to software development, ensuring that the program is

dependable, effective, and simple to maintain. The broad

area of software engineering includes a variety of tasks,

such as requirements gathering, design, coding, testing, and

maintenance.[3].

Software engineering is the process of using engineering

concepts and procedures to create software. It entails the

application of methodical, quantitative, and structured

approaches to software development, allowing for the

mailto:chaabi@ircam.ma
mailto:Meetnajran@gmail.com
mailto:Yah.AlAshmoery@su.edu.ye
mailto:koalwesabi5022@gmail.com
mailto:eng.adnanhaider@gmail.com
mailto:hesham_haider@yahoo.com

production of high-quality software that is dependable,

effective, and simple to maintain [4].

Software development is a complex process that involves

several stages, from planning and design to coding and

testing. The software development life cycle (SDLC) is a

framework that outlines the various stages of software

development, including planning, design, development,

testing, deployment, and maintenance [5]. There are several

SDLC models, including the Waterfall model, the Agile

model, and the Spiral model.

Software developers go through a process known as the

software development life cycle (SDLC) to create and

maintain software. It is a framework that aids in making

sure software is created in an ordered and methodical

manner that satisfies the needs of users and stakeholders [6].

Agile software development approaches are becoming more

and more well-liked in the software development business

because of their adaptability and flexibility. Agile

approaches are built on iterative and incremental

development, where software is created in quick bursts,

allowing for constant feedback and advancement [7].

II. BACKGROUND

Software engineering is a field of study that combines

computer science and engineering to create software

systems. It entails the application of methodical and

disciplined methodologies to software development, which

guarantees that the software is dependable, effective, and

simple to maintain. Requirements analysis, design, coding,

testing, and maintenance are just a few of the many tasks

that fall under the umbrella of the large discipline of

software engineering. [8].

Software systems are now used in our daily lives as a result

of the remarkable advancement in technology. Software

engineering can be characterized as a dynamic field that

strives to create high-quality software systems using

organized project processes adapted to the concepts of user-

centered design. The Software Development Life Cycle

(SDLC), a set of fundamental processes used in the design,

development, and testing of software programs, aids in this

process. The most popular SDLC models include waterfall,

V-model, spiral, and Rapid Application Development

(RAD), agile which are the main software development

approaches [9].

Software development projects often face challenges such as

changing requirements, tight deadlines, and complex

technical environments. Agile methodologies offer an

alternative to traditional project management approaches by

emphasizing flexibility, collaboration, and continuous

improvement. Agile methodologies promote iterative

development, frequent feedback, and close collaboration

between team members and stakeholders [10].

A software development life cycle (SDLC) is a process that

software developers go through to create and maintain

software. It is a framework that helps to ensure that software

is developed in a systematic and organized way, meeting the

needs of the users and stakeholders [11].

The SDLC comprises several stages, including requirements

gathering, design, development, testing, deployment, and

maintenance. Software engineering principles are applied

throughout each stage of the SDLC, with a focus on

ensuring that the software is efficient, reliable, and easy to

maintain [12].

The Waterfall Model, V-Model, and RAD are examples of

traditional software development techniques, also referred to

as "heavyweight methodologies". These methods are

predicated on a series of steps that must be carried out

sequentially, such as specifying requirements, creating a

solution, testing it, and deploying it. According to

conventional software development methodologies, a

trustworthy set of requirements must be created and

documented at the beginning of a project. [13] .

Traditional software development methodologies, such as

the waterfall model, are often characterized by their

emphasis on planning and documentation. These

methodologies can be effective for projects with well-

defined requirements and a stable environment. However,

they can be less effective for projects with changing

requirements or a dynamic environment [14].

A linear approach to software development is the waterfall

model. It consists of a number of successive phases, each of

which must be finished before the subsequent phase may

start. For projects with clearly specified criteria and a set

budget and timetable, the waterfall SDLC is a solid option.

[15].

According to theory, there are five stages involved in

creating and implementing computer software in a software

development life cycle (SDLC) model.

❖ Planning

❖ Analysis

❖ Design

❖ Implementation

❖ Testing, Deployment and Evolution

III. TYPES OF COMMON SOFTWARE DEVELOPMENT

PROCESS MODELS

There are several common software development process

models that organizations can use to manage the software

development life cycle. Here are some of the most popular

ones:

1. Waterfall model:

The Waterfall model is a conventional approach to software

development that has been in use since the 1970s. It is a

sequential process that requires each phase to be finished

before moving on to the next. This model is frequently

criticized for being rigid and not accommodating changes in

requirements, which can result in delays and cost overruns.

However, it is still used in some industries, such as

construction and manufacturing, where the requirements are

clearly defined [15].

The Waterfall Model is a traditional approach to software

development that is based on a linear, sequential process. It

consists of several phases, such as requirements gathering,

design, implementation, testing, and maintenance, and each

phase must be completed before moving on to the next [16].

The Waterfall Model is often depicted as a cascade, with

each phase flowing down into the next.

The requirements are gathered and recorded at the start of

the Waterfall Model process, and the design is based on

them. After the design is finished, the development of the

software based on the design takes place during the

implementation phase. After the implementation is finished,

the program is tested to make sure it complies with the

specifications and is free of errors. Finally, the software is

deployed and maintained after testing is over.

Despite its drawbacks, the Waterfall Model is still widely

used to describe the software development process,

especially in fields where the requirements are well-

established and unlikely to change. It gives software

development an organized approach, with each phase

building on the one before it, and it's frequently employed

for big, complex projects that need careful planning and

documentation [17].

Advantages of the Waterfall Model

• Easy to Understand:

• Individual Processing

• Clear and well-defined

• Easy to manage

• Clear Milestones:

• Document driven

Disadvantages of the Waterfall Model:

• Limited flexibility.

• Difficult to accommodate Change Requests.

• No Overlapping of Phases.

• Limited customer involvement.

• High risk.

• Late Defect Detection.

• Lengthy Development Cycle,

The Waterfall Model illustrated in figure 1 below.

Fig. 1: The Waterfall Model Process

2. V-Model:

The V-model is a software development model that is

used to describe the different stages of the software

development life cycle (SDLC). It is called the V-model

because the process flow is represented by a V-shape,

which shows the relationship between each stage of the

SDLC and its corresponding testing phase [17].

This model resembles waterfall model in its sequential

path execution of processes where each stage is

finalized before proceeding to the next step [18]. Unlike

waterfall method, the testing stage is emphasized in the

v-model. Testing guidelines are formulated in initial

stages before the implementation, and other stages are

preceding coding. Prior to the development process, a

system plan is designed based on the system

functionality to meet all user requirements [19]. Testing

of the project is planned in parallel of corresponding to

phase in V-model as mentioned in figure 2.

• The advantages of the V-model include:

• Easy to understand and apply.

• Testing-related tasks like planning and developing

tests take place before coding. This saves a ton of

time. higher likelihood of success than the waterfall

model, therefore.

• Proactive defect monitoring, which refers to the

early discovery of faults.

• Prevents the downward flow of faults.

• Effective for small tasks with clear criteria.

• Process that is explicit and well-defined: It is

easier to monitor and supervise the development

process since the V-model for software

development offers a process that is distinct and

well-defined. As a result, there may be an increase

in the development team's efficacy and efficiency.

• Risk reduction: The V-model can assist in

reducing overall project failure risk by identifying

and resolving problems early in the development

phase.

• The V-model has some drawbacks:

• Lack of flexibility: The V-model is a rigid and

inflexible paradigm that may not be suitable for all

software development endeavors. Making

adjustments to requirements or design

modifications as the project progresses could be

difficult.

• High cost: The V-model requires a lot of

preparation and documentation, which could be

expensive and time-consuming. This could be a

problem for projects with little funding.

• Limited stakeholder involvement: The V-model

places a strong emphasis on testing and quality

assurance, which may keep some stakeholders out

of the development process. As a result, it's

possible that stakeholders weren't properly

consulted, which could lead to a software solution

that didn't meet their needs.

• no early software prototypes: There are no early

software prototypes created because software is

built during the implementation phase.

• The test documents and requirement documents

must be updated if any modifications are made in

the middle of the project.

Fig. 2: The V-Model

3. Spiral Model:

The spiral model is a software development model that

combines elements of both the iterative and incremental

development models, as well as the Waterfall model. It is

called the spiral model because the process flow is

represented by a spiral that shows the iteration and

repetition of the development process [20].

Spiral model: The Spiral model is a risk-driven approach to

software development that emphasizes risk analysis and

management. It consists of several cycles, each of which

includes planning, risk analysis, development, and testing.

Each cycle builds upon the previous one, with feedback and

changes incorporated into subsequent cycles. This model is

often used for complex projects with high risks and

uncertainties [21].

The spiral model consists of four major phases, which are

repeated in a spiral fashion:

1. Determine Objectives: Each cycle in the spiral begins

with the determination of the cycle's objective, the

numerous options available for accomplishing the

goals, and the constraints that are present.

2. Risk Assessment and reduction: This phase sees the

identification, evaluation, and prioritization of the

project risks as well as the development of management

and mitigation plans.

3. Development and Test: Creating strategies to address

risks and uncertainties is the following phase.

Benchmarking, simulation, and prototyping are a few

possible steps in this process.

4. Planning: Finally, the next step is planned. The project

is evaluated, and a decision is taken regarding whether

to move forward with another spiral period. Plans for

the project's next phase are created if it is decided to

keep it. We display the Spiral Model in Figure 3.

The Spiral Model has the following advantages:

• Risk management: The spiral approach emphasizes

risk management heavily, which helps with early risk

detection, analysis, and mitigation. By doing this, the

likelihood that a project will fail as a whole can be

reduced.

• Flexibility: It is more flexible than the Waterfall model,

which allows for changes and modifications to be made

to the software throughout the development process.

• Participation of stakeholders and users: The spiral

model places a strong emphasis on involving

stakeholders and users at every stage of the

development process, which can help to ensure that the

software satisfies their needs and requirements.

• Iterative testing and evaluation: The software can be

tested and evaluated iteratively using the spiral

approach, which can enhance the software's

dependability and quality.

• Allows for the extensive use of prototypes.

• More precise requirement capturing is possible.

• A better risk management strategy can be achieved by

breaking development up into smaller pieces and

developing the riskier portions sooner.

The disadvantages of the Spiral Model are as follows

• Complexity: The spiral model can be more

complex and difficult to manage than other

software development models because of the

iterative and repeated structure of the process..

• Cost: Due to the additional level of planning,

analysis, and testing needed, the spiral approach

may be more expensive than other software

development models.

• Time-consuming: Due to the spiral model's

iterative process and requirement for ongoing

testing and assessment, it may take longer than

other software development methods to complete.

• End of the project may not be known early.

• Not suitable for small or low risk projects and

could be expensive for small projects.

• Documentation is overly required for the large

number of intermediate phases.

.

Fig. 3: The Spiral Model

4. Rapid Application Development Model:

Rapid application development is a method of software

development that places an emphasis on rapid prototyping

over in-depth planning. A prototype is a working model that

is functionally equivalent to a product component [22]. The

RAD model allows for quicker product delivery because

functional modules are simultaneously developed as

prototypes and then assembled to build the whole product.

Because there isn't any considerable preplanning,

incorporating the changes during the development process is

easier. Small teams of developers, domain experts, client

representatives, and other IT resources work iteratively on

their component or prototype in RAD projects. These

initiatives likewise use an incremental and iterative

approach. For this technique to be successful, it is essential

to ensure that the produced prototypes are reusable [23].

The Rapid Application Development (RAD) model is a

software development methodology that emphasizes rapid

prototyping and iterative development. The RAD model is

designed to reduce the development time and costs

associated with traditional software development

methodologies [24].

In the RAD model, the development process is broken down

into smaller, more manageable iterations or prototypes.

Each prototype is developed quickly and tested to ensure

that it meets the requirements of the end-users. Feedback is

then gathered from the end-users, and any necessary

changes or improvements are made to the prototype before

moving on to the next iteration [25].

The RAD model is often used in projects where time-to-

market is critical. It is also useful in projects where the

requirements are not well-defined or are likely to change

frequently. The RAD model promotes collaboration and

communication between developers and end-users, which

can lead to a better understanding of the project

requirements and ultimately, a better end product.

The following illustration the RAD Model in Fig 4.

Fig. 4: The RAD Model

The advantages of the RAD Model are as follows:

• Speed: The RAD methodology allows for the rapid

development of software. Since the RAD methodology

places a strong emphasis on prototype and iteration, it

can develop usable software more quickly than certain

other techniques.

• Flexibility: Iterative procedures make it simple to

integrate updates and changes as they occur, and the

RAD model is flexible enough to be readily adjusted to

meet new requirements.

• Cost-effective software development: The RAD model

can be effective because it stresses prototype and

iteration, which can ultimately lower development

costs. Early issue detection helps developers avoid

expensive fixes that might be required if they wait until

later in the development process.

• Improved user participation: By include them in the

prototyping and iterative feedback cycles, the RAD

model actively involves end users in the development

process. This leads to a greater understanding of user

needs and requirements, which ultimately results in a

more satisfying finished product.

• It is possible to adapt to changing requirements.

• Progress can be measured.

• Utilizing robust RAD tools can reduce the amount of

time spent iterating.

• Productivity with fewer people in a short time.

• Reduced development time.

• Increases reusability of components.

• Each phase in RAD brings highest priority functionality

to the customer.

The disadvantages of the RAD Model are as follows:

• Quality Control: The RAD approach places a lot of

focus on speed and flexibility, sometimes at the

sacrifice of quality assurance. Software is created

so quickly that there may not be enough time to

thoroughly test and debug the application.

• Limited scalability: Due to its limited scalability,

the RAD model is best suited for small to medium-

sized applications. Larger projects could require a

more structured approach to development.

• High dependency on individuals: An expert team

of developers, designers, and users is necessary for

the RAD paradigm. The RAD paradigm might not

work if the right team is not in place.

• All application is not compatible with RAD.

• On the high technical risk, it's not suitable.

• Management complexity is more.

• Required user involvement.

5. Agile software development Model

The Agile software development model is an incremental

and iterative method for creating software that prioritizes

customer satisfaction, cooperation, and adaptability. The

Agile model emphasizes the delivery of functional software

in tiny, incremental releases, with each release giving end

users access to additional features and capabilities [26].

Agile development involves breaking down the

development process into smaller, more manageable parts

called sprints, which typically last for 1-4 weeks. During

each sprint, the development team works on a specific set of

tasks, such as developing new features, fixing bugs, or

improving existing functionality. At the end of each sprint,

the team delivers a working piece of software, which can be

reviewed by the product owner or stakeholders [27].

One of the key principles of Agile development is the

importance of collaboration and communication between the

development team and the stakeholders. This includes

regular meetings, such as daily stand-ups and sprint

retrospectives, to ensure that everyone is on the same page

and any issues or concerns are addressed in a timely manner

[28].

Another important aspect of the Agile model is the focus on

adapting to change. Agile development recognizes that

requirements and priorities can change over time, and

therefore, the development process should be flexible

enough to accommodate these changes. This is achieved

through continuous feedback and iteration, with the aim of

delivering the most value to the customer [29].

A. The following steps are usually included in the agile

software development process::

1. Gathering of Requirements: The customer’s

requirements for the software are gathered and

prioritized.

2. Planning: The development team develops a

delivery plan for the program, outlining the

features that will be provided in each iteration.

3. Development: The development team works to

build the software, using frequent and rapid

iterations.

4. Testing: The software is put through a rigorous

testing process to make sure it is high-quality and

fits the needs of the customer.

5. Deployment: The software is deployed and put into

use.

6. Maintenance: The software is maintained to make

sure that it continues to meet the demands and

expectations of the customer.

Fig. 5: The Agile software development model

The 'Agile Software Development manifesto' was published

in 2001 as a consequence of a formal partnership between

17 software engineering consultants that created and

supported lightweight adaptive methodologies [30]. It

outlines a set of ideals and principles for software and

system agility. Four ideals and twelve principles supported

and made up the essence of being agile in this concept.

These values and principles serve as the foundation for the

software development process and provide the distinctive

qualities for any approach with the agility feature [31].

According to the Manifesto, whenever a decision needs to

be taken, emphasis should be placed on the matters that fall

to each fundamental value's left rather than its right. The

following are these four values [30]:

1. Individuals and interactions over processes and

tools.

2. Working software over comprehensive

documentation.

3. Customer collaboration over contract negotiation.

4. Responding to change over following a plan.

PRINCIPLES BEHIND THE AGILE MANIFESTO

We follow these principle [30]:

1. Our highest priority is to satisfy the customer through

early and continuous delivery of valuable software.

2. Welcome changing requirements, even late in

development. Agile processes harness change for the

customer's competitive advantage.

3. Deliver working software frequently, from a couple of

weeks to a couple of months, with a preference to the

shorter timescale.

4. Business people and developers must work together

daily throughout the project.

5. Build projects around motivated individuals. Give them

the environment and support they need, and trust them

to get the job done.

6. The most efficient and effective method of conveying

information to and within a development team is face-

to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The

sponsors, developers, and users should be able to

maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good

design enhances agility.

10. Simplicity--the art of maximizing the amount of work

not done--is essential.

11. The best architectures, requirements, and designs

emerge from self-organizing teams.

12. At regular intervals, the team reflects on how to become

more effective, then tunes and adjusts its behavior

accordingly.

The advantages of the Agile Model are as follows:

• Flexibility: Agile methodologies are designed to be

adaptable and flexible in response to changing

requirements. Since the development process is

iterative, changes can be made at any stage, which is

useful in projects when the requirements are not quite

apparent at the outset.

• Reducing risk: The Agile model promotes frequent

testing and feedback, which can lower the likelihood of

delivering a product that doesn't match customer

expectations or has significant problems.

• Customer satisfaction: The Agile methodology places

the interests of the client first by involving them in the

development process through constant feedback and

cooperation. By doing so, it is ensured that the final

product meets the needs and preferences of the client.

• Improved teamwork: The Agile methodology

encourages collaboration and teamwork amongst

stakeholders, testers, and developers. This might result

in greater communication and problem-solving skills,

which would ultimately result in better work.

• Reduced time to market: The Agile model's focus on

delivering functional software in manageable chunks

may lead to a quicker time to market. This can be

helpful, particularly in industries where time-to-market

is crucial.

The disadvantages of the Agile Model are as follows:

• Lack of predictability: Because of the Agile model's

high flexibility and adaptability, it may be difficult to

foresee how a project will ultimately turn out.

Budgeting, scheduling, and other resource planning can

be challenging for individuals concerned.

• Complexity: The Agile methodology may be more

challenging than conventional techniques, especially for

teams who are new to Agile. It requires a full

understanding of Agile principles and practices, which

can take time and be challenging to implement.

• Dependence on team members: The success of the

Agile methodology greatly depends on the skills and

commitment of each team member. If team members

are not fully committed or lack the necessary skills, it

could be challenging to achieve the desired results.

• High level of participation: The Agile approach

requires high participation from every team member,

including developers, testers, and stakeholders. Teams

that are geographically dispersed or organizations with

limited resources may find this challenging.

• Strict delivery management determines the scope,

functionality to be delivered, and adjustments to meet

deadlines.

• Depends heavily on customer interaction, so if

customer is not clear, team can be driven in the wrong

direction.

• Technology transfer to new team members may be

challenging due to a lack of documentation.

Essentially, the Agile model is a collective iteration grouped

to do the development practice of a product. These

procedures share some essential qualities but do have

assured little differences between each of them [32]. Here

are lists of different types of Agile models that are used by

software development companies in Fig 5. These are:

• Scrum

• Crystal

• Kanban

• Dynamic Software Development Method (DSDM)

• Feature Driven Development (FDD)

• Extreme programming (XP)

• Lean Software Development

Amongst them, Scrum, Lean and Extreme programming are

some of the most popular forms of Agile development

methodologies

Fig. 6: The different types of Agile software
development models

IV. The comparison between Agile and traditional

approaches to software development:

In this section, we will show a comparison between Agile
and traditional approaches to software development [33][34]:

1. Approach: Agile is an iterative and incremental
approach that stresses providing usable software gradually
and constantly, whereas traditional SDLC follows a linear

approach that requires finishing each phase of the
development cycle before moving on to the next..

2. Requirements: Agile focuses on delivering working
software incrementally based on customer feedback and
changing requirements. Agile teams aim to deliver the
minimum viable product (MVP) early and continuously
improve it based on feedback. In contrast, traditional SDLC
requires a detailed and well-defined set of requirements
before development begins. Traditional teams aim to deliver
a fully polished and complete product at the end of the
development cycle.

3. Planning: Agile emphasizes flexibility and
adaptability, allowing for changes to be made at any point
during the development cycle. Agile teams use short
planning cycles and prioritize delivering high-value features
early. In contrast, traditional SDLC requires extensive
planning and documentation before development begins.
Traditional teams use long planning cycles and aim to deliver
a complete product at the end of the development cycle.

4. Timeframe: Agile aims to deliver working software
incrementally and continuously, with a focus on delivering
value early and often. Agile teams divide their development
cycle into sprints, typically lasting two to four weeks, and
aim to deliver a working product incrementally at the end of
each sprint. In contrast, traditional SDLC projects typically
have longer development cycles and a fixed release date.
Traditional teams aim to deliver a fully polished and
complete product at the end of the development cycle.

5. Quality: Agile prioritizes delivering working software
that meets the minimum viable product (MVP) requirements
and can be improved iteratively with customer feedback.
Agile teams aim to deliver value early and often, even if the
product is not fully polished. In contrast, traditional SDLC
focuses on delivering a highly polished final product that
meets all the requirements. Traditional teams aim to deliver a
complete and polished product at the end of the development
cycle.

6. Team Structure: Agile promotes cross-functional
teams that work collaboratively throughout the entire
development cycle. Agile teams are self-organizing, with
team members from different disciplines collaborating
closely. In contrast, traditional SDLC often involves large
teams with distinct roles and responsibilities. Traditional
teams may include project managers, business analysts,
developers, and testers.

7. Communication: Agile emphasizes the importance of
face-to-face communication and collaboration between team
members and stakeholders. Agile teams use short planning
cycles, daily stand-up meetings, and regular retrospectives to
encourage collaboration and communication. In contrast,
traditional SDLC relies heavily on documentation and formal
communication channels. Traditional teams use long
planning cycles, formal documentation, and meetings to
communicate progress and issues.

8. Risk management: Agile has a more proactive
approach to risk management, with risks identified and
addressed throughout the development cycle. Agile teams
use short planning cycles, user stories, and daily stand-up
meetings to identify and address risks early. In contrast,
traditional SDLC typically has a more reactive approach to
risk management, with risks identified and addressed during

specific phases of the development cycle. Traditional teams
use formal documentation and meetings to identify and
address risks.

V. Scrum Software Development Framework

Popular Agile software development framework Scrum
has a focus on adaptability, teamwork, and continual
improvement. Scrum is a well-liked option for teams looking
to adopt Agile software development processes since it is a
simple, lightweight framework. [37].

In the broader Agile technique, which has dominated

software development for the past 20 years, the Scrum

framework is the most well-liked approach. Although

accurate figures are difficult to find due to the market's

extreme fragmentation, the vast majority of software

development teams utilize a project management

methodology that may be loosely categorized as Agile [38].

According to the Scrum Guide [39], “Scrum is a framework

using within which people can address complex adaptive

problems, while productively and creatively delivering

products of highest value.”

While the concept borrowed its name from a technique in

the Rugby game, it was Ken Schwaber and Jeff Sutherland

who created the agile scrum methodology in 1995.

Eventually, the concept developed into a cohesive set of

practices, and with the launch of the Scrum Alliance, there

are over one million Scrum-certified developers at present.

In practice, Scrum is designed to be lightweight and easy to

understand. We break projects into pieces (sprints) that

allow greater transparency and numerous opportunities to

inspect and adapt the next sprint, the overall project, and the

process.

Scrum is inherently customer-centric, recognizing that

requirements often change and the overall product backlog

will continue to evolve after each sprint cycle. Using a

process designed with these realities in mind, we can

complete the end product faster and ensure it better meets

the client’s goals.

According to the 15th State of Agile Report [40], 94% of the
1382 international respondents' employers had adopted
Agile. 66% of those who claimed they used a Scrum
framework to implement an Agile methodology variation at
the team level were within the majority.

Core Concepts of Scrum:

1) Scrum Artifacts

There are three artifacts in Scrum: the product backlog, the

sprint backlog, and the product increment:

• Product Backlog: An ordered list of everything a team

needs to complete to build the product. Due to the

nature of Scrum, the list is constantly evolving with

new feedback and ideas.

• Sprint Backlog: A subset of the product catalog, i.e., a

fixed set of tasks your team needs to complete in a

single development cycle (sprint).

• Product increment: We achieve product increment

after completing the sprint backlog. The “completion”

is pre-defined, including testing and/or complete

approval.

2) Scrum Roles

The average scrum team consists of 4-8 people falling into

one of three roles:

• Product owner: A product owner owns the product’s

vision and decides on the product backlog. They also

relay between the team and various

stakeholders/customers.

• Scrum Master: A Scrum master’s role is to support the

team by removing any obstacles to success. The Scrum

Master is adept at facilitating team communication in

daily scrum meetings, encouraging process

improvements, and ensuring the team adheres to Scrum

principles. This duality of roles (supporting and leading

the team) is also called a “servant-leader” role.

• The Development Team: The scrum development

team consists of developers, UX/UI designers, and QA

team members who contribute to each sprint. As needs

change over time, the composition of the team is self-

organizing.

3) Scrum Events

The Scrum framework is based on incremental products

developed in time-boxed events (e.g., sprints of equal

duration). The average sprint event length is 2-4 weeks, with

an average of 5 sprint events per project.

Each Scrum event includes the following five components:

• Sprint Planning Meeting

• The Sprint

• Daily Scrum Meetings

• Sprint Review

• Sprint Retrospective

4) Scrum Core Values

The scrum development approach has five core values and

six principles and principles that all team members share to

help them work together as a cohesive unit.

• Courage: The team must feel confident to share

ideas and feedback, speak up about obstacles, and

push back when needed.

• Focus: The time-boxed design of each sprint helps

scrums stay laser-focused on a finite amount of

work. We reinforce focus in Scrum via daily

updates on ongoing tasks.

• Commitment: A scrum team is like any

relationship: open communication, trust, and

communication are essential to agile teams

working well together and committing to tasks they

believe they can complete.

• Respect: Cross-functional teams often come with

competing input, but with that must come respect

for ideas and individuals.

• Openness: Hand in hand with courage, your team

members must be open to the feedback received

from others and be willing to adapt to feedback

from the team, stakeholders, or customers.

Advantage of using Scrum framework:

1. Improved Productivity: Teams can operate more

effectively and efficiently thanks to Scrum. Scrum aids

teams in setting priorities and maintaining concentration on

the most crucial tasks at hand by focusing on producing

working software in brief iterations..

2. Increased Transparency: Scrum offers both team

members and stakeholders a high level of transparency.

Regular gatherings, such as the Daily Scrum, Sprint Review,

and Sprint Retrospective, make it easier for everyone to

monitor progress, spot problems, and make the required

corrections.

3. Flexibility and Adaptability: Scrum is made to be agile

and responsive to changing conditions. The framework

enables teams to swiftly modify their strategies and goals in

response to fresh data or market shifts..

4. Better Communication and Collaboration: Scrum

encourages team members to collaborate and communicate

often. The framework promotes honest and open

communication, which aids in speedy conflict resolution and

enhances team dynamics.

5. Continuous Improvement: Scrum promotes continuous

progress by requiring frequent review and modification. A

crucial component of the framework is the Sprint

Retrospective, which enables teams to evaluate their

performance and find methods to streamline their

procedures..

Disadvantage of using Scrum framework:

While Scrum has many advantages, there are also some

potential disadvantages to consider, including:

1. Complexity: Scrum can be challenging, especially for

teams who are unfamiliar with the methodology. It demands

a substantial time and money commitment to implement, as

well as a high level of commitment and discipline from the

team.

2. Lack of Predictability: Scrum is made to be fluid and

adaptable, which might make it challenging to foresee how a

project will turn out. For stakeholders used to more

conventional project management techniques that place a

higher priority on predictability, this might be difficult.

3. Emphasis on Soft Skills: Scrum places a lot of emphasis

on soft skills like cooperation, communication, and

problem-solving. All teams need these talents to succeed,

but they can be difficult to measure or quantify, making it

difficult to assess the performance of individual team

members.

4. Potential for Scope Creep: Scrum promotes adaptation

and flexibility, which, if teams aren't attentive, can

occasionally result in scope creep. This may cause

initiatives to take longer than expected or to cost more than

originally estimated.

5. Not Suitable for All Projects: Scrum works well for

projects that are complex, uncertain, and subject to constant

change. A more conventional project management

methodology can be more suitable for projects that are

straightforward and well-defined.

In comparison to Scrum's numerous advantages, its

drawbacks are generally small. To decide whether to use the

framework for a certain project or team, it is crucial to take

into account these potential limitations..

Fig. 7: The Scrum Software Development Framework

VI. Important studies and statistics on the Agile

Software development Methodologies

Many businesses and research firms have undertaken studies

about the application of Agile development approaches.

Here are some of the major conclusions from a handful of

them:
1. VersionOne's State of Agile Report [41]: One of the

most thorough investigations of the adoption of Agile is

this yearly survey. Based on replies from more than

1,400 participants, the most recent report discovered

that:

• 98% of those surveyed had already used Agile,

with Scrum being the most often used framework.

• The most often cited advantages of adopting Agile

were a better capacity to manage shifting priorities

(58%), increased team productivity (54%), and

improved project visibility (52%).

2. Agile Alliance's Agile 20XX survey [42]: The Agile

Alliance conducts an annual survey that focuses on the

adoption and usage of Agile methodologies. The most

recent survey's significant conclusions include :

• 97% of respondents said their business uses Agile, with

Scrum being the most widely used framework.

• Improvements in teamwork (47%) and software quality

(39%) as well as shorter time to market (37%), were the

main advantages of adopting Agile.

3. McKinsey's Agile at Scale survey [43]: This survey

focused on large organizations' adoption of Agile at

scale. Some key findings include:

• (81%) of respondents reported using Agile

methodologies, with Scrum being the most popular

framework .

• The most significant benefits of Agile at scale were

faster time-to-market (85%), increased collaboration

(82%), and higher quality software (81 .)%

5. Scrum.org's State of Scrum Report [44]: This survey is

focused specifically on the Scrum framework and its

adoption. Key findings from the latest report include:

• (90%) of respondents reported that Scrum improved

their team's ability to deliver value.

• The most common challenges with Scrum adoption

were lack of experience with Agile (40%), inadequate

training (36%), and difficulty changing organizational

culture (34%).
Overall, these studies show that Agile methodologies are
popular and offer businesses significant benefits like
improved collaboration, a quicker time to market, and better
software quality. Even though the Scrum framework is the
most well-known, Agile methods like Kanban and Lean are
rising in popularity .

Furthermore, it appears from these polls that Agile
techniques are becoming more and more crucial for
businesses of all sizes and in all sectors. The adoption of
Agile has several advantages, including enhanced
cooperation, accelerated time to market, higher-quality
software, and elevated customer satisfaction. However, there
are also common adoption hurdles, such as reluctance to
change and a lack of expertise or training. Agile approaches
can also be used in other parts of the organization to boost
success and overall agility. They are not just restricted to
software development.

VII. CONCLUSION

Agile and traditional software development approaches each
have benefits and drawbacks of their own. Agile is more
suited to projects that require flexibility, adaptability, and the
capacity to manage changing requirements, whereas
traditional SDLC is better suited to projects that have clearly
defined requirements and a specified scope. The most
appropriate of these two strategies will depend on the
project's particular requirements and constraints.

Agile techniques encourage teamwork, continuous
improvement, and the quick delivery of functional software.
They are appropriate for projects with a lot of
unpredictability and a need for rapid adjustments. Traditional

models, on the other hand, work effectively for projects with
clearly defined scopes, requirements, and deliverables.

Agile methodologies have been used by several firms in
recent years to improve their software development
processes. The exact requirements and goals of a project
ultimately determine whether to use an Agile method or a
traditional one..

Although the Agile model can be a successful software
development process, there are a number of disadvantages
that should be carefully considered before employing this
tactic. There may be a lack of predictability, a high level of
involvement, complexity, a lack of documentation,
dependency on team members, and challenges in managing
large teams, among others.

Choosing the software development methodology that best
fits the unique needs and goals of your project is crucial in
the end. The most important factor, whether you use Agile or
traditional ways, is to continue to be adaptable, flexible, and
open to change because software development is a discipline
that is continually developing and requires ongoing learning
and development..

REFERENCES

[1] Braude, E. J., & Bernstein, M. E. (2016). Software

engineering: modern approaches. Waveland Press.

[2] Giuffrida, R., & Dittrich, Y. (2015). "A conceptual

framework to study the role of communication

through social software for coordination in globally-

distributed software teams".Information and Software

Technology, 63, 11-30.

https://doi.org/10.1016/j.infsof.2015.02.013

[3] Lalband, Neelu, and D. Kavitha. "Software engineering

for smart healthcare applications." Int J Innov Technol

Explor Eng 8.6S4 (2019): 325-331.

[4] Taskesenlioglu, Sedat, Necmettin Ozkan, and Tugba

Gurgen Erdogan. "Identifying possible improvements

of software development life cycle (sdlc) process of a

bank by using process mining." International Journal of

Software Engineering and Knowledge Engineering

32.04 (2022): 525-552

[5] Gurung, Gagan, Rahul Shah, and Dhiraj Prasad Jaiswal.

"Software Development Life Cycle Models-A

Comparative Study." International Journal of Scientific

Research in Computer Science, Engineering and

Information Technology, March (2020): 30-37.

[6] Ian Sommerville, "Software Engineering", Addison

Wesley, 10th edition, 2016.
[7] Agile Business Consortium Ltd. (2017). Towards an

Agile Culture. Retrieved from

https://cdn.ymaws.com/www.agilebusiness.org/resourc

e/resmgr/documents/whitepaper/towards_

an_agile_culture.pdf

[8] Gurung, Gagan, Rahul Shah, and Dhiraj Prasad Jaiswal.

"Software Development Life Cycle Models-A

Comparative Study." International Journal of Scientific

Research in Computer Science, Engineering and

Information Technology, March (2020): 30-37.

[9] R. Hoda, N. Salleh, J. Grundy, H. M. Tee, Systematic

literature reviews in agile software development: A

tertiary study, Information and Software Technology 85

(2017) 60–70.

[10] Vijayasarathy, L. R., & Butler, C. W. (2016). "Choice

of software development methodologies: Do

organizational, project, and team characteristics

matter?". IEEE software, 33(5), 86-94.

https://doi.org/10.1109/ms.2015.26

[11] Iqbal, Syed Zaffar, and Muhammad Idrees. "Z-SDLC

model: a new model for software development life

cycle (SDLC)." International Journal of Engineering

and Advanced Research Technology (IJEART) 3.2

(2017): 8.

[12] Kramer, Mitch. "Best practices in systems development

lifecycle: An analyses based on the waterfall model."

Review of Business & Finance Studies 9.1 (2018): 77-

84.

[13] Gurung, Gagan, Rahul Shah, and Dhiraj Prasad Jaiswal.

"Software Development Life Cycle Models-A

Comparative Study." International Journal of Scientific

Research in Computer Science, Engineering and

Information Technology, March (2020): 30-37.

[14] Niederman, Fred, Thomas Lechler, and Yvan Petit. "A

research agenda for extending agile practices in

software development and additional task domains."

Project Management Journal 49.6 (2018): 3-17.

[15] Kramer, Mitch. "Best practices in systems development

lifecycle: An analyses based on the waterfall model."

Review of Business & Finance Studies 9.1 (2018): 77-

84.

[16] Aroral, Harkirat Kaur. "Waterfall Process Operations in

the Fast-paced World: Project Management Exploratory

Analysis." International Journal of Applied Business

and Management Studies 6.1 (2021): 91-99.

[17] Kargl, Frank, et al. "A privacy-aware V-model for

software development." 2019 IEEE Security and

Privacy Workshops (SPW). IEEE, 2019.

[18] Jovliyevich, Kholikulov Bekzod. "A Survey of

Software Development Process Models in Software

Engineering." Eurasian Scientific Herald 8 (2022): 69-

72.

https://doi.org/10.1109/ms.2015.26

[19] Khan, Nabeel Asif. "Research on various software

development lifecycle models." Proceedings of the

Future Technologies Conference (FTC) 2020, Volume

3. Springer International Publishing, 2021.

[20] Alshamrani, Adel, and Abdullah Bahattab. "A

comparison between three SDLC models waterfall

model, spiral model, and Incremental/Iterative model."

International Journal of Computer Science Issues

(IJCSI) 12.1 (2015): 106.

[21] Doshi, Dhruv, Labdhi Jain, and Kunj Gala. "Review of

the spiral model and its applications." Int. J. Eng. Appl.

Sci. Technol 5 (2021): 311-316.

[22] Egwoh, Abdullahi Yusuf, and Ogwueleka Francisca

Nonyelum. "A software system development life cycle

model for improved students communication and

collaboration." International Journal of Computer

Science & Engineering Survey (IJCSES) 8.4 (2017): 1-

10.

[23] Akinsola, Jide ET, et al. "Comparative analysis of

software development life cycle models (SDLC)."

Intelligent Algorithms in Software Engineering:

Proceedings of the 9th Computer Science On-line

Conference 2020, Volume 1 9. Springer International

Publishing, 2020.

[24] Boehm, Barry, et al. The incremental commitment

spiral model: Principles and practices for successful

systems and software. Addison-Wesley Professional,

2014.

[25] lbanna, A., & Sarker, S. (2016). "The risks of agile

software development: Learning from Adopters". IEEE

Software, 33(5), 72-79.

https://doi.org/10.1109/ms.2015.150

[26] Anwer, F., Aftab, S., Waheed, U., & Muhammad, S. S.

(2017)." Agile Software Development Models TDD,

FDD, DSDM, and Crystal Methods: A Survey".

International journal of multidisciplinary sciences and

engineering", 8(2), 1-10.

[27] Chopade, M. R. M., & Dhavase, N. S. (2017). "Agile

software development: Positive and negative user

stories". 2nd International Conference for Convergence

in Technology (I2CT) (pp. 297-299). IEEE.

https://doi.org/10.1109/i2ct.2017.8226139

[28] Morandini, Marcelo, et al. "Considerations about the

efficiency and sufficiency of the utilization of the

Scrum methodology: A survey for analyzing results for

development teams." Computer Science Review 39

(2021): 100314.

[29] Edison, Henry, Xiaofeng Wang, and Kieran Conboy.

"Comparing methods for large-scale agile software

development: A systematic literature review." IEEE

Transactions on Software Engineering 48.8 (2021):

2709-2731.

[30] Beck, Kent, et al. "Manifesto for agile software

development." (2001).

[31] Al-Saqqa, Samar, Samer Sawalha, and Hiba

AbdelNabi. "Agile software development:

Methodologies and trends." International Journal of

Interactive Mobile Technologies 14.11 (2020).

[32] Jovanović, Miloš, et al. "Agile transition and adoption

frameworks, issues and factors: a systematic mapping."

IEEE Access 8 (2020): 15711-15735.

[33] Gaborov, Maja, et al. "Comparative analysis of agile

and traditional methodologies in IT project

management." Journal of Applied Technical and

Educational Sciences 11.4 (2021): 1-24.

[34] Shaikh, Sarang, and Sindhu Abro. "Comparison of

traditional & agile software development methodology:

A short survey." International Journal of Software

Engineering and Computer Systems 5.2 (2019): 1-14.

[35] Martin, R.C., Agile Software Development, Principles,

Patterns and Practice. Prentice Hall. 2002.

[36] CollabNet VersionOne. (2019). 13th Annual State of

Agile Report. CollabNet, Inc. Retrieved from

https://explore.versionone.com/state-of-agile/13th-

annual-state-of-agile-report/

[37] Carneiro, Laura B., Ana Carolina CLM Silva, and

Luciana Hazin Alencar. "Scrum agile project

management methodology application for workflow

management: a case study." 2018 IEEE International

Conference on Industrial Engineering and Engineering

Management (IEEM). IEEE, 2018.

[38] Zayat, Wael, and Ozlem Senvar. "Framework study for

agile software development via scrum and Kanban."

International journal of innovation and technology

management 17.04 (2020): 2030002.

[39] Schwaber, Ken, and Jeff Sutherland. "The scrum

guide." Scrum Alliance 21.1 (2011): 1-38.

[40] I. Digital.ai Software, “15th State of Agile Report,”

Digital.ai, pp. 1– 23, 2021, [Online]. Available:

https://stateofagile.com/#.

[41] VersionOne Inc. (2020, May 28). 14th Annual State of

Agile Report. Retrieved from stateofagile.com:

https://stateofagile.com/#ufh-i-615706098-14th-annual-

state-of-agile-report/7027494

[42] Thonet, Claudia. "Agile Culture Change in Sales." The

Agile Sales: Successfully shaping transformation in

sales and service. Wiesbaden: Springer Fachmedien

Wiesbaden, 2023. 77-109.

[43] Naslund, Dag, and Rahul Kale. "Is agile the latest

management fad? A review of success factors of agile

https://doi.org/10.1109/ms.2015.150
https://doi.org/10.1109/i2ct.2017.8226139
https://stateofagile.com/#ufh-i-615706098-14th-annual-state-of-agile-report/7027494
https://stateofagile.com/#ufh-i-615706098-14th-annual-state-of-agile-report/7027494

transformations." International Journal of Quality and

Service Sciences 12.4 (2020): 489-504.

[44] Scrum.org's State of Scrum Report (2019)

 https://www.scrum.org/resources/2019-scrum-master-

trends-report

