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Abstract— Abstract – Determining the optimal fuzzy terms, 

which lead to the minimum global error, remains a challenge in 

the fuzzy methods. Another challenge is that the parameters of 

the consequent section are usually selected individually thus 

resulting insufficient fuzzy systems. In this paper, A Structural 

Enhancement of evolving method (SEEM) has been proposed to 

solve such problems. SEEM has been developed evolutionarily 

based on incremental partitioning learning. SEEM begins with 

an initial fuzzy system that has double fuzzy terms for the 

antecedent part. Then, to create a more accurate fuzzy system, 

it keeps improving by identifying the ideal input fuzzy term and 

ideal consequent parameter. There are two steps involved in 

determining the antecedent component and the consequent 

parameters. By detecting the distinction points (extremum and 

inflection points) using the gradient descent approach, it first 

identifies fuzzy terms and the consequent parameters. This 

continues until all of the fuzzy terms and consequent parameters 

are obtained. The second step is identifying the ideal new fuzzy 

terms that produce the global best result. This model utilizes the 

gradient descent estimator to obtain the optimum consequent 

parameters. As a result, SEEM produces sufficient fuzzy 

systems that have fewer number of fuzzy rules with high 

accuracy. 

Keywords— Evolving methods, incremental learning, and 

function approximation. 

 

I. INTRODUCTION  

Recently, a variety of application domains, including 
medical applications and system control applications, have 
become more interesting in fuzzy modeling [1-3]. One of the 
most popular fuzzy modelling techniques, based on an error 
reduction approach, is the fixed grid partitioning [4-6]. This 
technique, however, has a number of shortcomings that make 
it unsuitable for use, including: It first leads to an exponential 
expansion in the rule base and the antecedents' parameters. 
Second, the antecedent part's fuzzy terms are frequently not 
the right ones. Thirdly, it makes use of input partitioning that 
is fixed and predefined. To get around these issues, a number 
of strategies, such [7-10] are suggested. These techniques are 
regarded as evolving methods that use incremental learning to 
enhance performance. The evolving approaches based on 
input-output clustering [11-16],[21] are another kind.  

The problem of finding the best fuzzy terms, which results 
in the best global error, still concerns the approaches outlined 
above. Additionally, the parameters of the consequent part 
significantly contribute to improving the precision of the 
fuzzy system. In order to create the most accurate fuzzy 
system possible, it is necessary to get the consequent 
parameters that are compatible with the generated fuzzy terms. 
Our previous works [17,18] suggest a solution for the medium 

mailto:Yah.AlAshmoery@su.edu.ye
mailto:hesham_haider@yahoo.com


and large dataset but not the small one which will be proposed 
in this paper. 

In this study, a structural enhancement of evolving method 
(SEEM) is suggested. The evolving-construction scheme for 
fuzzy systems (ECSF) is a major driving force behind SEEM 
[9]. Unlike ECSF, SEEM selects the best fuzzy word that 
results in the overall best outcome. Additionally, SEEM 
employs gradient descent to identify the ideal consequent 
parameters. 

 

II. METHODOLOGY  

In this section, the methodology of how the proposed 
SEEM is evolved is demonstrated and divided into four sub-
sections. It starts with the general mathematical formulations 
for the fuzzy rules of the SEEM then Splitting Techniques, 
adding and updating Membership function are presented to 
find the fuzzy terms. After that, finding the intersection of 
adjacent subranges to locate the optimal consequent 
parameters is presented. Finally, A summary of the algorithm 
is discussed and illustrated. Evolving system 

A. Formulations 

Similarly to our pervious works [17, 18], the proposed 
work uses mamdani type due to the high interpretability as 
compared to Takagi-Suqeno(T-S) type [19]. SEEM begins 
with a closed range that covers the whole training data (initial 
domain). The membership function that is used in this paper 
is the triangular function. The initial domain (closed range) 

starts with [ cc, 
] where  c  and c are the minimal and 

maximal value of the input variable x , respectively. nc
 and 

nc
 represent the edges of nth range. Therefore, the first fuzzy 

rule is as follow  

IF x  is kA  THEN y  is ky , k  =0,1 

where  
,0 cA =
 when k =0, 

,1 cA =
 when k  = 1. 𝑘 is 

used to represents the edges of the closed range. 
ky

 are 
singleton parameters. 

In this section, the formulation of the membership 
functions for the closed range is demonstrated. From now on, 
the index n refers to the closed range that will be split. First, 
the membership function for the fuzzy term of the antecedent 

part 
).0(0 =kA

is  
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Second, for the fuzzy term 
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Based on the centroid defuzzifier [20], and the 
characteristics of the triangular membership function, the 
model output can be computed as the following equations. 
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B. Splitting Techniques, adding and updating Membership 

function 

The proposed fuzzy system begins with very simple 
domain (closed range) as illustrated earlier. Then, based on the 
maximal average error, the closed range is selected for 
splitting. The selected range will be divided into two 
subranges at the training sample point (𝑥𝑠𝑝 = splitting sample 

point) which has the maximal error. This splitting technique is 
implemented in the first stage of locating the optimum fuzzy 
terms with the optimum consequent parameters.  It is similar 
to the ECSF. The following formulas represent how a new 
membership function is created and how the old ones are 
updated for the splitted subrange as follow. 

The new membership function (MF) is 
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Here is how the old MFs is updated for the closed range as 
follow 
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C. Finding the intersection of adjacent subranges 

  In SEEM, singleton membership functions are used for 
the consequent parameters and obtained using gradient 
descent estimator. One membership function is required for 
each splitting point, although two singleton membership 
functions are employed for each splitting point (the distinction 
point). Therefore, the intersection’s value ( 𝑥 ,  𝑦 ) of each 
adjacent subrange is used to represent the new splitting point 
( 𝑥𝑠𝑝  = 𝑥 ) and consequent parameter ( 𝑦 ) as in Figure 1. 

Consider a fuzzy system with three fuzzy terms as an example. 
When applying the gradient descent estimator for the two 
subranges, the splitting point's consequent parameter (𝑥𝑠𝑝 = 

15) has two values: one is taken from the left subrange, and 
the other is obtained from the right subrange, as illustrated in 



 
Fig 1: Adjusting the split point using the intersection to 

find the best consequent parameter and split point 

 

 

Figure 2. The optimum consequent parameters between the 
two values [9, 11] were found using the ECSF while 
preserving the same splitting point as a solution to this 
problem. As a result of this refinement having an impact on 
both subranges of the training data, the error will grow. 

However, using the intersection point demonstrates that there 
are only a small number of training samples that are affected. 
As a result, this method will be used as the next step for 
discovering the best fuzzy terms and the best resulting 
parameters because the accuracy will be improved more than 
ECSF refining. 

 

 

 

 

 

 

III. ALGORITHM FOR A STRUCTURAL 

ENHANCEMENT OF EVOLVING METHOD 

Parameters: Predefined threshold = β, number of subrange 
= η, desired number of subrange = ή and global average error 
= GAE. 

Stage 1:- Locating the primary splitting points and 
consequents parameters 

Step 1: Define the initial domain as a closed range [ cc, 
], 

where c   and c  are the minimal and maximal values of the 
input variable, respectively. 

Step 2: Locate the consequent parameters using gradient 
descent. As a result, the initial system is created. 

Step 3: Select the subrange with the maximal average error 
to be divided into two subranges.  

Step 4: Find the training sample with maximal error for the 
selected subrange to be the splitting point (𝑥𝑠𝑝). 

Step 5: Split the selected subrange at 𝑥𝑠𝑝 

Step 6: Retrain the consequent parameters 𝑦𝑘   for the 
whole system after the splitting using gradient descent. 

Step 7: If (GAE < β) & (η < ή) go to step 3. 

Stage 2:- Locating the best splitting points and 
consequents parameters 

Step 8: Find the new consequent parameters 𝑦𝑘 (locally) 
for each subranges using gradient descent. 

Step 9: Find the new split-points by finding the 

intersection of the new consequent parameters 𝑦𝑘  (found in 
step 8) for each adjacent subrange. 

Step 10: For each split point select either the old split point 
or the new split point from step 9 that produces minimal 
average error. 

Step 11: After finding the best split points at step 10, apply 

gradient descent to the whole 𝑦𝑘  to get the final optimal 

consequent parameters 𝑦𝑘. 

 

IV. RESULT AND DISCUSSION 

Dataset: Consider the one-dimensional function-
approximation issue presented by:: 

(x, y) 

TABLE I.  COMPARISON OF SEEM IN RMSE WITH FGP AND ECSF FOR DATASET 1 

Number of 
fuzzy rules 

Accuracy in RMSE 

 
The proposed 

SEEM 
ECSF FGP 

2 0.99905 1.007251 1.007251 

3 0.93188 0.964071 1.001439 

4 0.41535 0.428396 0.484671 

5 0.32015 0.398373 0.494885 

6 0.30854 0.358614 0.618366 

7 0.23247 0.283207 0.474807 

8 0.12524 0.163423 0.137907 

9 0.09950 0.140443 0.299793 

10 0.07624 0.135001 0.203244 
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In this dataset, 200 data samples are created at random 

from the range of x  ∈ (0, 12). Table 1 compares the SEEM, 
ECSF, and Fixed-grid-partitioning approaches (FGP) that 
have been presented. Root mean square error (RMSE) is used 
to evaluate accuracy. 

 The comparison demonstrates unequivocally that SEEM 
generates greater accuracy with regard to fewer fuzzy rules. 
As an illustration, the RMSE of the SEEM model with eight 
fuzzy rules is 0.125, while the RMSE of the FGP and ECSF 
models with ten fuzzy rules is 0.203 and 0.135, respectively. 
Furthemore, SEEM produces  RMSE of 0.07624 for ten fuzzy 
rules. On the other hand, for the same number of fuzzy rules, 
ECSF and FGP produces 0.135001, and 0.203244 
respectively. which indicates lower performance than the 
proposed SEEM. Two factors account for the proposed 
approach's great performance: First, choose the best split 
points, and then use gradient descent to fine-tune the 
parameters of the consequents. 

V. CONCLUSION 

This paper proposes A Structural Enhancement of 
evolving method for fuzzy systems. The primary contribution 
of SEEM is to identify the antecedent part's best global fuzzy 
terms that result in the smallest global average error. 
Moreover, it finds the best consequent parameters using 
gradient descent estimator. The examination of SEEM showed 
significant results among the other methods. 
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