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Abstract 

We study the phase transition from the persistence phase to the extinction phase for the SIRS (susceptible/ 

infected/ refractory/ susceptible) model of diseases spreading on small world network. We show the effects of 

all the parameters associated with this model on small world network and we create the full phase space. The 

results we obtained are consistent with those obtained in Ref. [7] in terms of the existence of a phase transition 

from a fluctuating endemic state to self-sustained oscillations in the size of the infected subpopulation at a 

finite value of the disorder of the network.  Our results also assert that, transition specifically occurs where 

the average clusterization shifts from high to low. The effect of clustering coefficient on SIRS model on the 

networks can be understood from the results obtained in Ref. [9], which indicates the importance of existing 

the loops in the network, in order to the disease to spread frequently throughout the nodes of network. Where, 

clusters tend to spread infection among close-knit neighborhoods. Hence, when the loops are high inside the 

network, the reinfection occurs in the network at many places and at different times, which looks like as a kind 

of randomness in occurring the second period of infection. Whereas when the number of loops are low, 

reinfection occurs at specific places and times on the network, which looks like as a kind of regularity in 

occurring the second period of infection.   
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Introduction 

In the modelling of many interacting particles on 
the networks, the effect of the networks structure 

on the properties of dynamical systems defined on 

such networks has been attracted a lot of attention 

recently. Researchers from different fields ranging 
from neurodynamics and ecology to social sciences 

have been extensively working in this area1, 2, 3, 4, 5, 

6, 7, 8. In small world networks6, one starts with a 
ring of N nodes, in which each node connected to 

its k nearest neighbors on either side. Then each 

link from a site to its nearest neighbor is 
reconnected to another randomly chosen lattice site 

with probability p. This model is proposed to 

mimic real life situations in which non-local 

connections exist along with predominantly local. 

SIRS for epidemic model on the networks is 
defined as follows7, 8, 9, for a lattice of N nodes in 

which each node connected to its k neighbors. The 

nodes can exist in one stage of three states, 
susceptible S, infected I and refractory R. 

Susceptible node can pass to the infected state 

through contagion by an infected one. Infected 

node pass to the refractory state after an infection 

time 𝝉𝑰. Refractory nodes return to the susceptible 

state after a recovery time 𝝉𝑹. The contagion is 

possible only during the S phase and only by I 
node. During the R phase, the nodes are immune 

and do not infect.  
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Kuperman and Abramson7 studied SIRS model on 

small world network with the following 
assumption: The susceptible node at time t, will be 

infected at time t + 1 with probability proportional 

to the fraction of infected nodes in its 

neighborhood. In other words, if 𝝉𝒊(𝒕) = 𝟎, then 

𝝉𝒊(𝒕 + 𝟏) = 𝟏 with the probability 𝝀𝒊 =
𝒌𝒊𝒏𝒇

𝒌𝒊
⁄  

where 𝒌𝒊 are total number of neighbors of site i, of 

which 𝒌𝒊𝒏𝒇  are infected. With probability 𝟏 − 𝝀𝒊, 

susceptible node does not change state. The 

dynamics for the infected node is deterministic. 

The infected node slowly become refractory and 
then eventually become susceptible again. For the 

values of k = 3, 𝝉𝑰 = 𝟒  and 𝝉𝑹 = 𝟓, they found 

that, for the more ordered systems, there is a 
fluctuating endemic state of low infection. 

However, at a finite value of the disorder of the 

network, they get a transition to self-sustained 

oscillations in the size of the infected 
subpopulation. In this work, we illustrate the effect 

of all parameters associated with this system on 

small world network.  

Simulation Results 

Here we study the effect of infection time 𝝉𝑰 on the 

steady state of the original model of Kuperman and 

Abramson7, as the long rang connection p is 

changed, for the case when 𝝉𝑹 > 𝝉𝑰 . We set the 
values of other parameters as that in original model 

unless we state different. 

Fig. 1, shows the effect of the increasing on the 

value of the infection time on the average value of 

the density of infected nodes 𝒏𝒊𝒏𝒇(𝒕) of this model 

on regular a one dimensional lattice. In that figure, 

we plot the density of infected nodes as function of 

time at different values of 𝝉𝑰 and 𝝉𝑹. For each curve 

on the figure, we set the value of ∆𝝉 = 𝝉𝑹 − 𝝉𝑰  to 

be minimum, i. e. ∆𝝉 = 1. As the figure shows, the 

density of the infected nodes during the first 

infection period increases as the value of 𝝉𝑰 

increases and that density reaches the maximum 

value when 𝝉𝑰 = 𝟏𝟎. 

It is clear from Fig.1 that, when 𝝉𝑰 = 𝟏𝟎, and after 

a short time, all the nodes on the network become 

sick (where the density of infected nodes initially 

is 𝒏𝒊𝒏𝒇(𝟎) = 0.1, and after 11 time-steps it 

becomes 𝒏𝒊𝒏𝒇(𝟏𝟏) = 𝟎. 𝟗𝟎 during the first 

infection period, hence system goes to the infection 
free state. For this case, it is evident that, any 

infectious node on the network infects all of its 

neighbors during its first infection period. So and 

according to Ref. [9] this system reaches extinction 
state, where all the nodes on the network become 

susceptible, and also the probability of getting two 

neighbors which were being infected with time 

difference 𝒕 > 𝝉𝑹 will be zero (see Fig. 2, when 

𝝉𝑰 = 𝟏𝟎). Therefor, for this case, all the nodes on 

the network pass only through one infection period, 

and system goes to an absorbing state. 

However, for the case when 𝝉𝑰 = 𝟔 and 𝝉𝑰 = 𝟖 as 

Fig. 1 shows, the density of infected nodes 
approaches the maximum value during the first 

infection period, while there are a significant 

numbers of nodes still unaffected. That means on 
the average, each infected node on the network 

does not infect all of its neighbors during its 

infection period. Hence, those uninfected nodes 

previously, there is a possibility to become lately 
infected by their second or third etc. infected 

neighbor. Thus in this case, the probability to get 

two neighbors on the network with 𝒕 > 𝝉𝑹 is 

possible (see Fig. 2, when 𝝉𝑰 = 𝟔 and 𝝉𝑰 = 𝟖). 

Therefore, this behavior prevents the system from 

falling to an absorbing state from the first infection 

stage9. 

For the same values of parameters in Fig. 1, we 

represent in Fig. 2 the density of pairs of neighbors 
which they have been infected with a time 

difference 𝒕 > 𝝉𝑹, as function of time. In that 

calculation, we consider only the nodes, which are 
in the states I and R. It is clear that, the density of 

pairs of neighbors, which they have been, infected 

with a time difference 𝒕 > 𝝉𝑹  decreases as the 

value of 𝝉𝑰 increases. Fig. 2 shows that, when  𝝉𝑰 =
𝟏𝟎, the density of pairs of neighbors with 𝒕 > 𝝉𝑹 

goes to zero. However, when 𝝉𝑰 < 𝟏𝟎  there are 

significant numbers of pairs of neighbors with 𝒕 >
𝝉𝑹. 

Figure 1: Density of infectious nodes as function of time for 
different values of  𝝉𝑰 and 𝝉𝑹, as shown in the legend. Other 
parameters are 𝑁 = 104, 𝑘 = 3, 𝑝 = 0.0$ and  𝒏𝒊𝒏𝒇(𝟎) =

0.1. 
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For completeness, we examine the model as the 

value of ∆𝝉 increases for various values of 𝝉𝑰 and 

𝝉𝑹. We find that, when 𝝉𝑰 = 9, system goes to the 

extinction state when 𝝉𝑹 = 𝟏𝟐. This corresponds 

to ∆𝝉 = 3. In general we find that, for any values 

of 𝝉𝑰 and 𝝉𝑹 which satisfy the condition 𝝉𝑰 < 𝝉𝑹, 

the system evolves to an extinction when 𝝉𝑰 +
𝝉𝑹 = 𝟐𝟏. 

Situation becomes more complicated on the small 

world network where, the nodes have different 

numbers of nearest neighbors 𝒌𝒊. There are nodes 

become heavily connected, such nodes will need 

less time on the average until they become infected. 
However, there are some other nodes become less 

connected, which means on the average they will 

need longer time until they become infected. We 

have performed extensive numerical simulations at 

different values of 𝒑 ranging from [𝟎. 𝟎𝟏 − 𝟏. 𝟎]. 
Interestingly we find that, for any value of 𝒑, the 

system reaches an extinction state when 𝝉𝑰 + 𝝉𝑹 ≈
𝟐𝟏, in behavior similar to what happens on the 

regular lattice. This result is expected where, small 

world network of Watts and Strogatz which we use 

in our network has on average a fixed connectivity 
〈𝒌〉 = 𝟐𝒌6 for any values of the disorder parameter 

𝒑. 

Finally, we study the effects of the parameters 𝝉𝑰, 

𝝉𝑹 and 𝒑  on the steady state of this model. Fig. 3 
shows, the density of infected nodes as function of 

time at different values of 𝝉𝑰 and 𝝉𝑹. Fig. 3a, shows 

three time series of 𝐧𝐢𝐧𝐟(𝐭) when the value of the 

disorder parameter 𝒑 is 𝒑 = 𝟎. 𝟐. In these curves, 

we fix the value of 𝝉𝑰 = 6, and 𝝉𝑹 takes the values 

𝝉𝑹 = 9 (bottom), 11 (middle), and 12 (top). It is 

evident that, as the value of 𝝉𝑹 increases, the 
system crosses from the fluctuating endemic state 

(when 𝝉𝑰 = 9) to an oscillatory state (when 𝝉𝑰 =
11). Even if the amplitude of oscillation is slightly 

small, but it is almost periodic with a very well 
defined period. Fig. 3b shows two time series of 

𝐧𝐢𝐧𝐟(𝐭) when the value of the disorder parameter 𝒑 

is 𝒑 = 𝟎. 𝟖. In the two curves, we fix the value of 

𝝉𝑰 = 6, and 𝝉𝑹 takes the values 𝝉𝑹 = 7 (top), and 

10 (bottom). It is clear in this case, the large 

amplitude self-sustained oscillation is developed. 

 
In Fig. 4, we create the phase space of the SIRS 

model at several values of 𝒑. For each value of 𝒑, 

we study the system at various values of 𝝉𝑰 and 𝝉𝑹. 
We find that, when value of the disorder parameter 

𝒑  is bigger than 0.14, we can distinguish between 

three phases: a susceptible-absorbing phase, a self-

sustained oscillation phase and a fluctuating 

endemic phase. Whereas, when 𝒑 < 𝟎. 𝟏𝟒 we 

observe only two phases, a susceptible-absorbing 

phase and a fluctuating endemic phase.                                                  

Figure 2: Density of pairs of nodes have 𝒕 > 𝝉𝑹 as function of 
time for different values of 𝝉𝑰 and 𝝉𝑹, as shown in the legend. 
Other parameters are 𝑵 = 𝟏𝟎𝟒, 𝒌 = 𝟑, 𝒑 = 𝟎. 𝟎 and 
𝒏𝒊𝒏𝒇(𝟎) = 0.1. 

Figure 3: Fraction of infected nodes as a function of time for 
the last of 𝟔𝟎𝟎𝟎 time steps. (a) Three time series are shown 
corresponding to different values of 𝝉𝑰 and 𝝉𝑹, for  𝒑 = 𝟎. 𝟐. 
(b) Two time series are shown corresponding to different 
values of 𝝉𝑰 and 𝝉𝑹, for 𝒑 = 0.8. All the curves have 𝑵 = 𝟏𝟎𝟒, 
𝒌 = 𝟑,  and 𝒏𝒊𝒏𝒇(𝟎) = 0.1. Each curve averaged over 20 
configurations 

a 

b 
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 In Fig. 4, for the case when 𝒑 = 𝟎. 𝟏 the regions 

II+III+IV (the regions under the black solid line) 

are corresponding to the fluctuating endemic 

phase, whereas the region I (the region upper the 
black solid line) is corresponding to an absorbing 

phase. The black solid line is the critical line that 

separates the absorbing phase from the coexistence 

stable phase. However, when 𝒑 = 0.2, the model 

shows the three phases: the susceptible-absorbing 

phase is the region I (the region upper the black 
solid line), self-sustained oscillation phase is 

corresponding to the region II (the region enclosed 

by the solid line and the dotted curve), and the 

regions III+IV are corresponding to the fluctuating 
endemic phase (the remaining region under the 

solid line and the dotted curve). The dotted curve 

is the critical curve that separates the oscillation 
phase from the fluctuating endemic phase. When 

𝒑 = 𝟎. 𝟖, the oscillation phase is corresponding to 

the regions II and III (the region enclosed by the 

solid line and the dashed curve). It is clear that, the 
region corresponding to the oscillation phase 

shrinks as the value of 𝒑 decreases and becomes 

wider as the value of 𝒑 increases. Here, we can 

infer that, the critical value of 𝒑, which separates 

the oscillation phase from the fluctuating endemic 

phase, should be in between 𝟎. 𝟏 < 𝒑 < 𝟎. 𝟐. For 

best estimate, the critical point is approaching the 

value 𝒑𝒄 = 𝟎. 𝟏𝟒 ± 𝟎. 𝟎𝟐,  at the values 𝝉𝑰 = 𝟕 

and 𝝉𝑹 = 𝟏𝟑. 

The value of 𝒑𝒄 we find here approximately is the 

value of 𝒑 where the average clusterization shifts 

from high to low as mentioned in Ref.7. We support 
that conclusion with the following argument. It had 

been proved in Ref.9 that, the clustering coefficient 

will play an important role in the SIRS model, 
where existence the loops on the network is 

necessary in order to the disease to spread 

frequently throughout the nodes of the networks. 
Whereas, clusters tend to spread infection among 

close-knit neighborhoods5. We speculate that, 

whenever the value of clustering coefficient is high 

the next period of infection will happen at many 
places on the network and at any time, which will 

look like as a kind of randomness (in space and 

time) in the next generation of infection. However, 
when the clustering coefficient becomes lower, 

which means the number of triangular loops on the 

network also will become lower, the reinfection 

will be localized where those loops exist, 
consequently the next period of infection (on the 

average) will happen at specific place and time on 

the network. This behaviour becomes more 
apparent as the value of clustering coefficient 

becomes smaller at higher values of 𝒑, where the 

periodicity of oscillation becomes smoother. 

Here, we point out to that, Phase transition at 

specified randomness values of small world 

network has been observed also in many other 
systems. For example, a propagation of rumors on 

small world networks10, the introduction of 

shortcuts enhances the network synchronizability 
in a system of coupled oscillatory elements11, also 

in a self-sustained activity of excitable neurons, the 

introduction of shortcuts changes the probability of 

failure from 0 to 1 over a narrow range in 𝒑12. In 
Ising model, the addition of shortcuts induces a 

finite-temperature phase transition even in the one-

dimensional13, and the introduction of 
unidirectional shortcuts can change the second-

order phase transition in the two dimensional Ising 

model into a first-order one14. 

Conclusion  

We have studied the spreading of infectious 

diseases for the SIRS model on small world 

network. We examine the effects of all parameters 
related to this model on its steady state. We find 

that, when the disorder parameter is 𝒑 > 𝟎. 𝟏𝟒, we 

can distinguish between three phases: a 

susceptible-absorbing phase, a self-sustained 
oscillation phase and a fluctuating endemic phase. 

Figure 4: Phase diagram in the (𝝉𝑰, ∆𝝉) plane of our 
model for values of 𝒑 = 𝟎. 𝟏, 𝟎. 𝟐 and 0.8. When 𝑵 =
𝟏𝟎𝟒, 𝒌 = 𝟑, and  𝒏𝒊𝒏𝒇(𝟎) = 0.1. For the case of 𝒑 =

𝟎. 𝟏, there are only two phase: the region I is 
corresponding to susceptible-absorbing phase and 
regions II+III+IV are corresponding to active phase 
with nonzero infective densities. The critical line 
between these two phases is the black solid line. For 
𝒑 = 𝟎. 𝟐, there are three phases: the region I is the 
absorbing phase, the region II is the self-sustained 
oscillation phase and the regions III+IV are the active 
phase. The dotted curve is the critical curve separates 
the oscillation phase from the active phase. For 𝒑 =
𝟎. 𝟖, there are also three phases: the region I is the 
absorbing phase, the regions II+III are the self-
sustained oscillation phase and IV is the active phase. 
For 𝒑 = 𝟎. 𝟖, the dashed curve is the critical curve 
separates the oscillation phase from the active phase. 
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However when 𝒑 < 𝟎. 𝟏𝟒 we find only two phases:  

a susceptible-absorbing phase and a fluctuating 

endemic phase. For best estimate, 𝒑 = 𝟎. 𝟏𝟒 ±
𝟎. 𝟎𝟐  is the critical value, which separates the 

oscillation phase from the fluctuating endemic 

phase for this model on small world network.  
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