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1. Abstract 
 

Smart grids are becoming increasingly popular due to 
their ability to enhance energy efficiency and reduce 
costs. However, they also pose new challenges to the 
security of the grid. One of the main threats to smart grids 
is False Data Injection Attacks (FDIA), which can cause 
serious damage to the grid if not detected and prevented 
in a timely manner. 

Deep learning techniques have shown great promise 
in detecting FDIA in smart grids due to their ability to 
automatically learn and detect patterns in large and 
complex datasets. In this research project, we review the 
existing deep learning techniques used to detect FDIA in 
smart grids. We provide an overview of the various deep 
learning models, such as Convolutional Neural Networks 
(CNNs), Recurrent Neural Networks (RNNs), and 
Autoencoders, that have been used to detect FDIA. 

We also discuss the challenges and limitations of 
using deep learning techniques for FDIA detection in 
smart grids, such as the lack of large-scale datasets and 
the need for more explainable models. Finally, we 
propose future research directions in this field, such as the 
development of hybrid models combining deep learning 
with other techniques to improve the accuracy and 
efficiency of FDIA detection. 
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2. Introduction 
 

The false data attack is recognized as a significant 
danger, capable of compromising the measurements of 
sensors in SG and attacking all layers of SG systems, thus 
bypassing traditional defense mechanisms [1]. For 
instance, a malicious actor can introduce false values into 
the state estimation process, resulting in catastrophic 
outcome. Defending against these attacks has become a 
significant issue, leading to the development of various 

detection methods in the past decade. However, most of 
these methods lack scalability and are not suitable for 
large-scale SG systems. Effective data analysis and 
anomaly detection techniques are necessary to handle the 
massive amount of energy data.  

To effectively detect these attacks, deep learning 
(DL) techniques are increasingly seen as a viable solution 
due to their scalability. Given the numerous contributions 
to this area, we aim to conduct a comprehensive survey 
of the advances in false data detection using DL methods. 
We will first review previous surveys on this research 
topic and then highlight our contributions. 

False data injection attacks pose a significant risk to 
the secure and reliable operation of the smart grid, and it 
is imperative to develop effective methods for detecting 
and mitigating such attacks. Deep learning, a subfield of 
artificial intelligence, has shown great promise in various 
applications, including anomaly detection and security. 
However, to the best of our knowledge, there have been 
limited studies exploring the use of deep learning in 
detecting false data injection attacks in the smart grid. 

The main research contributions of this work are 
summarized as follows:  

• It provides a comprehensive overview of the current 

state-of-the-art research in the field of false data 

injection attacks and deep learning-based solutions for 

their detection in smart grids.   

• It provides a comparative analysis of different deep 

learning techniques and identify the strengths and 

weaknesses of each technique.  

• It identifies research gaps in the field of deep learning 

for FDIA detection in smart grids and highlight areas 

where further research is needed and suggest future 

research directions.  

 

2.1 Smart grid’s network protocols   
Several communication protocols are needed for 

distributed and diverse applications in the smart grid. The 
smart grid network architecture and each network's 
protocol are shown in Figure1.1. ZigBee and Z-wave 
technologies are used by household appliances in the 
home area network (HAN) [2]. Devices linked to the 
neighborhood area network (NAN) often do so via the 



 

IEEE 802.11,and IEEE 802.16 , or IEEE 802.15.4 
protocols. Several industrial protocols, particularly 
Distributed Networking Protocols like 3.0 (DNP3) and 
the (Modicon Communications Bus (ModBus)), are 
utilized in WAN or Wide Area Networks and supervisory 
control and data acquisition (SCADA) applications [3]. 
Protocol IEC 61850 is utilized in substation automation 
[4]. We will cover Modbus and DNP3 in this section 
together with two more popular but weak smart grid 
protocols [5] [6]. The IEC 61850 protocol, power line 
communication, Bluetooth, Z-Wave, Zigbee, 
6LoWPAN, and WiMAX are all covered in full in [7] [8] 
[5]. 

 

 

Fig. 1  Illustration of smart grid network architecture 

 

2.2 Impact of FDIAs on Power Systems 
On the power grid, FDIAs may have a major 

negative financial or physical effect. 

1- Load Redistribution Attack: The Load Redistribution 

(LR) attack, which Yuan et al. propose targets the 

Security-Constrained Economic Dispatch (SCED) 

and may have an impact on the operation of the power 

grid, is a specific sort of FDIA [9]. By correctly 

redistributing the generation output, SCED helps the 

power system lower the overall cost of system 

operation. The system is forced into unfeasible 

operational states as a result of LR attacks, which 

cause the SCED to deliver inaccurate solutions based 

on corrupted state estimates. Furthermore, load 

shedding events that result from LR attacks have the 

potential to paralyze any quick corrective response 

[13], [10]. 

2- Energy Deceiving: Energy misleading assaults, a new 

FDIA variant that focuses on the energy distribution 

process' routing procedure, are studied by Liu et al. 

[11].  To determine the best path for energy to travel 

between grid nodes, the authors present a distributed 

energy routing scheme. An energy consumer or a 

producer, depending on the node, could exist. Using 

a measurement tool (like a smart meter), various 

nodes can be distinguished from one another. To 

share information like as measurements, requests, 

and demands, all nodes communicate with one 

another. The information transmitted between nodes 

is spoofed in order to carry out the energy-deceiving 

attack. The energy request and answer messages of 

the nodes contain malicious link-state information or 



 

malicious energy information. By carrying out a 

successful attack, it is possible to introduce 

fraudulent messages regarding the demand and 

supply of energy to the power grid and alter the 

memory of a measuring device. The attack would 

lead to imbalances between supply and demand, 

according to the authors' analysis of the energy 

misleading attack's effects using the suggested 

methodology. The price of distributing electricity 

may consequently significantly rise. 

3- Economic Attack: Xie et al. show how FDIAs have 

an impact on the energy market in terms of effects on 

economic operations [12]. Ex-post LMP values are 

used to produce the final settlement prices for real-

time market prices, which are then based on the actual 

SCADA measurements. Therefore, the outcomes of 

the SE, and subsequently, the price of electric energy, 

can be impacted if an attacker can manipulate the 

system measurement data. To calculate the LMPs and 

present the attack as a convex optimization problem, 

the authors employ a linear form of Optimal Power 

Flow (OPF), DCOPF. Two instances, one for a single 

congested line and the other for three congested lines, 

are applied to the IEEE 14 bus system.  The study 

demonstrates how FDIAs can be used by attackers to 

manipulate the ex-post market's nodal price and 

generate profits.  In a subsequent study [13], the 

authors also investigate more plausible assault 

scenarios under threat models in which the attackers 

are only able to control a small number of sensors. 

4.2 Dynamic Detection of False Data Injection 

Attack in Smart Grid using Deep Learning 
 

In [14], the authors propose a framework that 

utilizes deep learning to identify measurement 

irregularities resulting from FDI attacks. They employ 

both recurrent and convolutional neural networks to 

detect such attacks and their technique is able to identify 

hidden attacks by learning normal behavior from normal 

data. Their two-level detector, which is based on hybrid 

features, is reliable and can detect attacks even when the 

state vector estimator is not effective. The performance 

of the proposed algorithm is influenced by various 

parameters, which the authors discussed in detail. 

Additionally, they presented a thorough case study of the 

algorithm's performance on the IEEE 39-bus system. 

 

4.3 Cyber-Secure Hybrid Electric Load Forecasting 

Model 
 

The proposed deep learning framework AE-

CLSTM in [15] combines  the Autoencoder (AE), and 

Convolutional Neural Network (CNN), with Long Short-

Term Memory (LSTM) models to reliably anticipate 

electric demand in power grids across time spans ranging 

from an hour to a week. The suggested model's 

architecture is meant to be able to quickly pre-process 

and extract characteristics from data, and then forecast 

electric load in the ultra-short-term and short-term time 

horizons. The AE-CLSTM technique, a unique hybrid 

model of deep learning applications, is used in this work. 

Each of the models listed is detailed in depth, as is their 



 

mathematical modeling. 

The paper [15]  proposes a hybrid deep learning 

model, called AE-CLSTM, for electric load forecasting 

in ultra-short-term and short-term time horizons, which 

integrates the capabilities of autoencoder (AE), 

convolutional neural network (CNN), and long short-

term memory (LSTM) models. The AE-CLSTM 

architecture comprises an AE network for data pre-

processing and de-noising, a CNN model for feature 

extraction and behavioral pattern identification, and an 

LSTM model for training and forecasting. The 

performance of the AE-CLSTM model is compared 

against conventional CNN and LSTM models in terms 

of load forecasting in Tabriz, Iran, based on 

meteorological variables and historical information for 

the years 2017 and 2018. The experimental results for 

ultra-short-term and short-term load forecasting in all 

four seasons of 2019 demonstrate the superior 

performance of the proposed model. Furthermore, the 

model is shown to be resilient to cyber-attacks, 

specifically a False Data Injection Attack (FDIA), which 

is modeled as a scaling attack on air temperature 

parameters in all four seasons of 2019. The results in this 

case reveal the AE-CLSTM model's ability to reduce the 

effects of FDIA and data reconstruction accurately, 

emphasizing its practicality and security in power system 

forecasting applications. 

 

4.4 Deep learning-based identification of false data 

injection attacks on modern smart grids 
 

The proposed anomaly detection approach in [16] 

was built based on the error covariance matrix after the 

nonlinear deep learning model was used to anticipate the 

estimated operating states of the power network.  

To define crucial grid functions like load 

forecasting and economical load dispatch etc, operators 

at the control center use state estimation techniques [17]. 

A significant increase in cyberattacks has been 

observed, creating extremely vulnerable conditions, as a 

result of the widespread approval of IIOT devices within 

current power networks. The real-time detection of 

FDIA in the smart grid in conjunction with an effective 

projected operating state forecasting is thus the main 

emphasis of the current research. Compared to other 

SOA techniques, the robust, nonlinear LSTM structure 

exhibits a better forecasting horizon. Comparing the 

nonlinear LSTM structure to MLP, SVM, and ARIMA, 

there is also a superior improvement of the performance 

metrics. Since the computational efficiency of the 

proposed nonlinear LSTM model (i.e., the time required 

for testing and training) is in the range of µs, which is 

significantly less than the SCADA sampling period, it 

can be successfully applied in real-time. Future 

implementation of the suggested detection approach will 

be possible under smart grid contingency situations with 

a tighter bound on the detection benchmark, increasing 

the likelihood of FDIA discovery. 



 

4.5 Deep Learning Techniques for Detecting of 

False Data Injection Attacks(FDIA) in Smart-

Grid ystems: Benchmarking  

 

False data injection (FDI) attacks are a critical 

security issue that have the potential to significantly raise 

the cost of energy distribution [18]. The majority of 

current research is focused on FDI defenses for 

traditional power networks. However, a deep learning 

system has been developed to detect FDI threats in smart 

grids. This approach detects FDI assaults in real time via 

spatial-temporal correlations between grid components. 

The goal of FDIA is to deceive the system operator 

into accepting a compromised state estimate x̂ = x + c as 

a genuine estimate, where c ≠ 0 is the power system state 

deviation. They created a new data-driven technique for 

detecting FDIA in a SCADA system. It is expressed as a 

multilabel classification problem that assesses if each 

meter measurement is compromised. 

Here in [31] they designed a BDD-CNN 

architecture as a multilabel classifier and framed the 

FDIA locational detection problem as a multilabel 

classification problem. The standard BDD detector, 

which also filters out low-quality data, is used to assess 

the real-time measurement data quality. The CNN 

captures the FDIA's co-occurrence dependence and 

inconsistent behavior. The approach is cost-effective 

because it is based on the existing BDD, requires no 

modifications to the current BDD system, and is model-

free because the architecture is independent of any 

anticipated attack model. Additionally, the detection 

process takes only a few hundred microseconds on a 

typical home computer. They also conducted extensive 

simulations in the IEEE 118-bus power systems to 

demonstrate its feasibility. 

In particular, they showed that DLLD can perform 

locational detection for the entire bus system under a 

variety of noise and attack conditions. They further 

demonstrated that the presence-detection accuracy can 

be improved further by using a multilabel classification 

formulation, with the resulting presence-detection 

accuracy outperforming the state-of-the-art benchmarks. 

 

4.6 Deep learning for online AC False Data 

Injection Attack detection in smart grids: An 

approach using LSTM-Autoencoder  

 

The power system is a vital Cyber-Physical system 

that is susceptible to such assaults. This research [19] 

provides a new approach for identifying False Data 

Injection Attacks (FDIA)  in the power system. While 

the current FDIA detection algorithms mostly target DC 

state estimates, this research suggests a phased AC FDIA 

that targets load shedding and generation rescheduling. 

Variational mode decomposition (VMD) is used in the 

proposed technique to extract the spatial and spectral 

characteristics of the modes decomposed from the 

estimated states, and an LSTM-Autoencoder is trained to 

learn the temporal correlations between the multi-

dimensional feature vectors. An LR classifier is trained 

to determine whether an error deviation vector is 

anomalous based on the reconstructed error deviation 



 

vectors derived from the feature vectors generated and 

refined through an LSTM Autoencoder. Simulation 

exercises carried out within customized environments 

featuring IEEE 14/118 bus systems. Accordingly, the 

mechanism may attain sufficient levels of attack 

detection precision.  

In [19], a cutting-edge method is suggested to 

identify an AC FDIA that attempts to trigger load 

shedding and scheduling. The method is based on signal 

processing where the estimated state is divided into 

several modes using VMD, and the spatial and spectral 

properties are extracted from them. The authors trained 

an LSTM-Autoencoder model to learn the temporal 

correlations between the feature vectors using the feature 

vectors obtained from the "normal" estimated states. The 

deviation vectors of the reconstruction errors are 

calculated and updated using the experimental dataset 

and the trained LSTM-Autoencoder. The LR classifier 

can distinguish FDIA from events that occur during 

typical system operation based on the labeled deviation 

vectors. The effectiveness of the proposed mechanism is 

first evaluated through simulations, and the number of 

deconstructed modes is counted. Next, the authors 

investigated how the structure of the LSTM-

Autoencoder affects the effectiveness of detection. 



 

Table 1 paper evaluation 

Paper Author Year Algorithm Performance Strengths  

Paper 

1 [14] 

Xiangyu 

Niu et al. 

2019 Convolutional 

Neural 

Networks 

(CNN) and 

Long Short-

Term Memory 

(LSTM) 

networks 

Accuracy: above 90%. 

Weakness: When 

attacking power is low, 

we observe that the 

system's precision is 

low. Additionally, 

early construction of 

the electricity network 

was necessary for this 

mechanism to perform 

well. 

High detection accuracy 

may be attained for a variety of 

circumstances using the two-

level detection approach that is 

being offered. 

When is high, the 

suggested detection system can 

identify assaults by random FDI 

with an accuracy of above 90%. 

Paper 

2 [15] 

Ying Zhang 

et al. 

2020 AAE-based 

semi-supervised 

Accuracy: 96.25% on 

13-bus System and 

97.85% on 123-bus 

system 

 

Weakness: For 

prospective FDIAs that 

are not thoroughly 

examined and are not 

labeled in the training 

step, the suggested 

algorithms exhibit 

some weaknesses. 

 

The suggested technique 

has a detection error of 2.15% in 

the 123-bus system and 3.75% 

in the 13-bus system when 

utilized to detect the attacked 

metering data. Additionally, in 

the 13-bus and 123-bus systems, 

the suggested method's average 

computation time is 9.30 and 

14.81 milliseconds, 

respectively. 

Due to the effective 

integration of autoencoders with 

GAN, as demonstrated in the 

simulation results, better 

detection accuracy may be 

achieved. For example, the 

S3VM-based method performs 

worse than the suggested 

approach, with a detection 

accuracy of less than 80%. The 

proposed technique, however, 

obtains a high detection 

accuracy of up to 95%. 



 

Table 1 paper evaluation 

Paper Author Year Algorithm Performance Strengths  

Paper 

3 [13]  

Arash 

Moradzadeh 

et al. 

2022 AE-CLSTM 

technique 

(Autoencoder 

(AE), 

Convolutional 

Neural Network 

(CNN), and 

Long Short-

Term Memory 

(LSTM) 

models) 

Accuracy: above 97% the proposed mechanisms  

shows AE-CLSTM model 

outperformed traditional CNN 

and LSTM models in terms of 

performance, and the FDIA 

attack was executed as a scaling 

assault on air temperature 

parameters during all four 

seasons of 2019. The proposed 

AE-CLSTM model was able to 

remove the impacts of the FDIA 

assault and rebuild the data by 

depending on the intelligent 

structure since the attack was 

modeled in a way that by 

retaining the average data, it 

lowered and raised the air 

temperature parameters by 5%. 

Paper 

4 [17] 

Debottam 

Mukherjee 

et al. 

2022 Nonlinear Long 

Short-Term 

Memory 

(LSTM) model 

Accuracy: higher than 

95% 

Weakness: 

demonstrates the least 

accurate identification 

of the models tested 

compared to the others, 

however FDIA 

recognition is still 

easily accomplished. 

Further evidence 

suggests that SVM, as 

compared to the 

nonlinear MLP and 

ARIMA, requires a 

longer testing period as 

well as a longer 

training period to 

identify FDIA well. 

Since nonlinear LSTM 

models are computationally 

efficient and can be successfully 

executed in real-time,  proposed 

LSTM model detects the 

presence of FDIA with a 

probability of 95% for an attack. 

The detection strategy can also 

be implemented under 

contingency scenarios of the 

smart grid with a stricter bound 

over the detection benchmark. 



 

Table 1 paper evaluation 

Paper Author Year Algorithm Performance Strengths  

Paper 

5  [18] 

Lukumba 

Phiri et al. 

2023 BDD-CNN 

architecture 

The accuracy of the 

recommended 

detection method 

surpasses that of the 

DLBI and SVM 

algorithms, and that of 

these algorithms 

declines as the noise 

level rises. 

The architecture of the 

mechanism is cost-friendly in 

that it is built on the existing 

BDD, requiring no modification 

of the current BDD system, and 

model-free in that it depends on 

no assumed attack model. 

Additionally, the mechanism's 

detection process can be 

completed on a home computer 

in just a few hundred 

microseconds. Additionally, it 

was demonstrated that, in 

varied noise and attack 

situations, DLLD can carry out 

locational detection for the 

whole bus system.  

 

Paper 

6 [19] 

Liqun Yang 

et al. 

2021 LSTM-

Autoencoder 

Accuracy: 94.56% 

Weakness: The 

location detecting 

system has various 

flaws. 

The proposed mechanism is 

model-free since the design is 

unrelated to any presumptive 

attack model, is built on the 

existing BDD, and doesn't call 

for alterations to the BDD 

system. Furthermore, on a 

typical home computer, the 

detection procedure is 

completed in a matter of 

hundred microseconds. 



 

Table 1 paper evaluation 

Paper Author Year Algorithm Performance Strengths  

Paper 

7 [4] 

Shuoyao 

Wang et al. 

2020 Deep Learning 

based 

Locational 

Detection 

architecture 

(DLLD). 

The DLLD 

architecture 

concatenates a 

convolutional 

neural network 

(CNN) 

with a standard 

bad data 

detector (BDD). 

DLLD (Deep Learning 

for Large-scale 

Detection) achieves a 

high F1-Score of 

99.37% and a RACC 

of 93.2%. 

Weakness: suggested 

a reconstruction error 

distribution-based 

method for anomaly 

identification, however 

this approach has a 

high incidence of false 

alarms and necessitates 

setting a threshold. 

The proposed DLLD approach 

proposed a detection mechanism 

that is resistant to environmental 

noise and resilient to 

malfunctioning buses. The 

detection performance of the 

proposed method is superior to 

that of ARMA and RNN-

Autoencoder, and the proposed 

mechanism can archive the best 

performance with an AUC of 

0.9464. This demonstrates the 

superior effectiveness of our 

detection strategy. 



 

Table 1 paper evaluation 

Paper Author Year Algorithm Performance Strengths  

Paper 

8 [16] 

Adel 

Tabakhpour 

et al. 

2019 A Multi-Layer 

Perceptron 

(MLP) 

Accuracy: between 

91.80% and 99.87% 

 

Weakness: unable to 

launch a real-time 

assault. 

While 20% of them lack errors, 

the majority contains 

inconsistent, arbitrary-generated 

falsehoods (80%). To 

effectively train models, trains 

each of the 10,000 sets equally, 

allocating around 70% for actual 

model refinement, 

approximately 15% for quality 

control, and nearly 15% 

reserved exclusively for 

assessment. By leveraging the 

strong connection among 

remaining factors in our 

situation, PCA enables us to 

significantly reduce the 

dimensionality of our model 

(more than 90%) while keeping 

comparable efficacy. Reducing 

the number of training epochs 

from 118 to 44 also applies 

Principal Component Analysis 

(PCA) to the identical Multi-

Layer Perceptron (MLP). 

 

 

 

5. Conclusion  

 

Smart grid networks attack is increasing day by 

day confronting the expansion of the use of these 

networks, and the objective of these attacks is to 

destroy or reduce the efficiency of these networks. 

Here in this paper we focused on the most important 

strongest research’s which published in the resent five 

years (and this is what is done in all research In 

scientific papers published in the largest international 

journals), as there is no need to review all the research 

but its better to focus is only on recently published 

scientific papers, which were published in highly peer-

reviewed journals with a high impact factors. 



 

Our paper focused on the research’s that 

provided highly efficient techniques in confronting 

these attacks. In our paper, we reviewed the most 

important techniques that these researches presented, 

the most important advantages of the research, and 

some of the shortcomings from our point of view. In 

the table above, a comprehensive summary was made 

of the most important things mentioned in those 

papers, including: The most important scientific 

contribution of this research is summarizing and 

criticizing that research in a scientific and useful way 

for the reader, and this in itself is considered an 

important scientific contribution. 
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